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Abstract--Convective heating of an initially partially saturated packed bed and the consequent surface 
and internal evaporation of the liquid is considered for cases where the temperature everywhere in the bed 
is below the saturation temperature at the local total pressure. In the first period where the liquid phase is 
continuous (funicular regime), the effect of surface tension nonunifo~ity on the liquid and gas phase 
flows is examined. The critical time (the time at which the surface saturation becomes equal to the 
immobile saturation) is found from the integration of the conservation equations. The effect of the absolute 
permeability heterogeneities on this critical time is examined, and it is shown that for normal distributions 
in porosity, the critical time increases over that for homo~neous ~~ea~iti~. The mass transfer rate 
during the evaporative front regime is also predicted by treating both the dry and the wet regions and the 
moving interface. An experiment is performed in which a 0.10 mm glass spheres-ethanol bed is convectively 
dried, and good agreement is found between the predicted and measured mass transfer rates, critical times, 

and surface tem~ratures. 

1. INTRODUCTION 

ONE AREA of study associated with phase change in 

porous media is that of heat addition to an initially 
highly liquid saturated medium (saturation is the frac- 

tion of void space occupied by the liquid phase). Here 
we consider those partially saturated porous media 

with solid matrices that do not absorb water, i.e. non- 
hygroscopic porous media. In these matrices, the 
liquid moves through the pores and not within the 
solid phase. The liquid can also be adsorbed to the 
surface of the solid matrix (capillary condensation 
[l]). This adsorption, which is due to the van der 
Waals’ dispersive forces, is significant when the pores 
are very small (smaller than 1 pm). We will not address 
surface adso~tion/desorption here and will only con- 
sider pore sizes larger than 1 pm. When one of the 
surfaces is permeable and heat is added through this 
surface, and when, in addition, the temperature of this 
partially saturated porous medium is no higher than 
the boiling point anywhere within the medium, i.e. 
Z’(x) < T,(p,), then this transient liquid removal from 
the porous medium will have two distinct regimes. In 
the first regime, the liquid phase is connected through- 
out the medium and the liquid and its vapor are in 
thermodynamic equilibrium (the equilibrium state is 
influenced by the meniscus curvature as described by 
Defay and Prigogine [2]). This regime is called the 
funicular regime because of the early misconceptions 
about phase distributions of two-phase flow in porous 
media. According to these misconceptions, both 
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phases flowed simultaneously through channels with 
the gas moving in the inner core and the liquid in an 
annulus and the gas phase flowed inside and the solid 
channel walls (not necessarily constant area channels) 
on the outside. Flow visualizations have shown that 
the gas and Iiquid phases flow through their own 
network of channels [3]. In this regime, the liquid 
flows due to the gradient in the capillary pressure, and 
gravity can assist or oppose the flow. In addition, the 
presence of a temperature gradient within the medium 
and the consequent existence of a surface tension 
gradient moves the liquid away from the heated sur- 
face (opposing the capillary effect). Thus, capillarity, 
gravity, and thermo-capillarity are the most sig- 
nificant forces governing the liquid motion. As the 
liquid flows out of the medium, the local saturation, 
throughout, decreases with the saturation at the 
heated permeable surface decreasing the fastest 
(because the flow is towards the lowest saturation 
and also the resistance to liquid flow increases with 
decrease in saturation thus requiring large saturation 
gradients}. The end of the funicular regime is marked 
with the surface saturation dropping to the irreducible 
saturation si,. The time at which this occurs is called 
the critical time tC [a]. For a short period after t,, 
the heated surface will be intermittently dry which is 
associated with a decrease in the drying rate. After 
this inte~ttent surface-drying period, the moving 
interface regime begins. The surface becomes com- 
pletely dry, the surface temperature increases rapidly, 
and the heat transferred to the porous medium results 
in penetration of the evaporation front (a moving 
interface) into the medium. Figure 1 shows the two 
regimes and gives the saturation and temperature 
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NOMENCLATURE 

A area [m ‘1 f, critical time [s] 
Bo Bond number, yp,R’,!a T temperature [K] 
C (P&l(PC,)l .Y coordinate axis [m] 

‘x specific heat capacity [J kg-’ K.-.‘] X, interfacial location [ml. 
d diameter of sphere [m] 
D binary mass diffusion coefficient [m’ss’] Greek symbols 

& total thermal diffusion coefficient [m’s ‘1 t( thermal diffusivity [m’s_ ‘1 

D”, total mass diffusion coefficient [m’s’] c porosity 

.9 gravitational constant [m ss*] p dynamic viscosity [Pa s] 
h heat transfer coefficient [W mm ‘K ‘1 v kinematic viscosity [m’s ‘1 

h, mass transfer coefficient [m s ‘1 P density [kgmm3] 

% specific heat of vaporization [J kg-‘] 0 surface tension [Pa m] 
k thermal conductivity [W mm ’ K ‘1 00 standard deviation. 
k’ permeability [m’] 
Le Lewis number, r,/D Superscripts 
ti massflux[kgm-‘~~‘1 d dispersion 
M molecular weight [kg (kg-mol)- ‘1 porosity averaged. 

ii volumetric evaporation rate [kg mm3 s-‘1 

P pressure [Pa] Subscripts 

Pe Peclet number, uR/a or uB/D a ambient 

q heat flux [W m l] C condensible, capillary 

R radius [m] gas 
Re Reynolds number, uR/r: i heat 

R, universal gas constant, i interface 

8.3144 kJ kg -’ mall’ Km’ ir irreducible 

s saturation (wetting-phase) I liquid 

S reduced saturation (s-ss,,)/( 1 -s,, -sir& m mass 
u velocity [m s- ‘1 

0” 
noncondensible 

V volume [m’] initial 

t time [s] 1 at x = L. 

evolutions during convective heating of the surface. 
A description similar to that given above is presented 
by Whitaker and Chou [5] for nonabsorbing solid 
matrices and by Stanish et al. [6] for absorbing (hygro- 

scopic) solid matrices. 
In our study, we examine heat addition in these two 

regimes (funicular and evaporative front) by per- 
forming experiments and a one-dimensional, transient 

analysis. We are able to : 

(a) Extend the previous treatment of ref. [4] to 

include the evaporative-penetration front. 
(b) Clarify the relationship between the heat and 

mass transfer coefficients at the interface of a partially 
liquid saturated medium and an ambient plain 
medium and discuss the effect of surface saturation 
on these coefficients. 

(c) Discuss the effect of the presence of a surface 
tension gradient on the liquid flow and give the appro- 
priate momentum equation. 

(d) Examine the role of porosity heterogeneity and 
its effect on the capillary flow and on the critical time. 

In the experiments a packed bed of glass spheres 
of 0.10 mm diameter is initially partially saturated 

by ethanol and is at nearly uniform temperature. 
Then heated air is blown over its upper permeable 
surface. In the analysis, the two-phase flow and heat 
transfer in porous media are addressed using semi- 
empirical transport and constitutive equations. It 

should be mentioned that non-intensive drying (i.e. 
T(x) < 7’,(p,)) is not a problem in which a critical 
evaluation of the semi-empirical, two-phase flow 
momentum equations can be made. These problems 
are controlled by the external heat supply during the 
funicular regime and by heat and mass diffusion in 
the dry zone during the evaporative front penetration. 
However, for these problems, a proper description of 
porous/plain media interfacial heat and mass transfer 
coefficients is essential. 

2. EXPERIMENT 

The bed of 0.10 mm spherical glass particles 
(porosity E = 0.40) is placed so that its permeable 
surface is flush with the lower surface of a wind tunnel. 
The tunnel and the walls of the bed are made of 
Plexiglas. The air drawn into the tunnel is heated with 
a 1.5 kW heater and placed upstream of the bed. 



Funicular and evaporative-front regimes in convective drying of granular beds 411 

(a) Funicular Regime 

Vapor, I+, 

1 

Adiabatic & 
Impermeable 

To T, T,- -0 sir 
- Y 

(b) Moving Interface Regime 

FIG. 1. A schematic of the problem considered and the distribution of saturation and temperature during: 
(a) the funicular regime ; (b) the evaporative, moving front regime. 

Downstream of this heater is a passive mixer used 
for temperature uniformity and a polyurethane foam 
block used for velocity unifo~ity. The velocity field 
over the bed is measured with a precalibrated hot 
wire, and the velocity outside the boundary layer is 
found to be nearly uniform. The packed bed is 15 x 15 
cm in cross section and has a depth of 25.4 mm. The 
temperature of the air and at several locations within 
the bed is measured. 

The bed is initially flooded with ethanol. This results 
in a saturation dist~bution Q(X) and a temperature 
distribution T(x), where both are nonuniform. The 
initial saturation distribution is determined by the 
irreducible, nonwetting phase saturation sir8 and the 
local balance between capiliarity and gravity. The 
initial temperature nonuniformity is due to unavoid- 
able evaporation prior to the start of the convective 
heating. The heat for this evaporation (both surface 
and internal) is supplied mostly from the bed, result- 
ing in a decrease in the bed temperature, mostly near 
the bed surface. 

The bed is periodically (every l-10 min, depending 
on the mass transfer rate) lowered and placed on a 
digital scale for measurement. The blower and heater 
in the wind tunnel are turned off during this measure- 
ment. The accuracy of the scale is 0.01 g, and the 
accuracy of the thermocouples is +O.l”C. An infra- 
red camera is also used to measure the bed surface 
temperature, and the readings of this and the surface 
thermocouple are in agreement to within 1°C. 

The permeability of the bed is found from the Car- 
man-Kozeny equation (which is proven accurate for 
randomly arranged spherical particles [4]) 

I(= 
d2E3 

18o(l-&)z (1) 

and is 9.9 x lo-” m2. 
The heat and mass transfer coefficients for the 

flooded surface (surface saturation of unity, i.e. 
s, = 1) are determined by measuring the mass transfer 
rate (which is the product of the mass flux ti and 
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surface area A) and the difference between the surface 
and ambient temperatures, i.e. 

1 

m4g 
h=-. 

T, -T, 

The analogy between heat and mass transfer, for fully 
liquid covered surfaces, can be used if proper account 
of the properties are made f7], and this gives for the 
mass transfer coefficient 

h, = 
h 

(/?CJ&+~ 

In the following we report results for an air flow 
rate which gives T, = 55”C, h = 18.3 W m-‘K-‘, and 
h, = 0.10 m SC’. The density of ethanol in ambient 
pCsa is zero. 

3. ANALYSIS 

The one-dimensional, transient, two-phase flow 
(depicted in Fig. 1) is described using the concept of 
relative permeability and the continuity and momen- 
tum equations as given by Whitaker [8], except the 
shear drag at the interface of the liquid and gaseous 
phases and the microscopic and macroscopic inertial 
forces are negligible for this problem. However, the 
effect of the surface tension gradient can be important, 
and the formulation of Bear and Bensabat [9] is used. 
These give 

as au, 
Pl”~+Pljy= -?i 

Ewl-s) : a&% _ ri 

at ax 

(6) 

(7) 

where u, and us are the superficial velocities (averaged 
over the entire pore volume). We have treated the 
liquid phase as incompressible and the gaseous phase 
is assumed to behave ideally with 

PP = Peg + Pngr Pg = Peg +P”g, 

with c standing for condensible and n for non- 
condensible. The vapor and liquid are in equilibrium, 
and the effect of curvature on the equilibrium state is 
included [2]. The local volumetric evaporation rate 
is ri [kg me3 s-‘3. The species con~rvation for the 
noncondensible gas component is treated as a binary 

mixture (noncondensible and condensible) and is 
given by 

ap (1 -s) ap,,u, a a png 
E +-- + --,x- = ax Dns, z p, (9) 

where 

D, = Dm+D;,+D& (10) 

where Q,,, is the effective molecular mass diffusion. 
We can use the results for gas impermeable solid phase 
for single-phase flows given by Neale and Nader [lo]. 
Assuming that diffusion through the liquid phase is 
negligible and using a linear relation with saturation, 
this gives 

D, -_= 
D &(W (11) 

where D is the binary mass diffusion in plain media. 
The mass dispersion coefficient D$ for transport of 
noncondensibles through the liquid phase is negligible 
and that for the gaseous phase can be approximated 
by using the result of Koch and Brady [l 11, along with 
a linear relation for saturation, i.e. 

Dd 
Z=E 0.7SPP,+~~“(l-&)PPplnPe, 

D [ 1 (l-s) 

Peg=+. 

w 

(13) 

Note that D, appearing in the species conservation 
equation (9) is the lon~tu~nal component of the total 
effective mass diffusivity tensor. The velocity of the 
noncondensible molecules used in equation (9) is 
given by 

@“P 
l=u __!%D 

g Png 
?_!!%> 

“i3.x Pg 

The energy equation is given by 

g 
ax 

=-fz_, f? fit& ax h ax 

where Dh is total effective thermal diffusivity 

Dh = D&+0:,+0; 

(14) 

(15) 

(16) 

and where, again, these are the longitudinal com- 
ponents of the total effective thermal diffusion tensor. 

From Somerton et al. [12], and Udell and Fitch 
[ 131, we have 

& / s,:zkfs= 1)-k&=0) (17) k&s = 0) = 

XI ki k, 
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where k, is the effective thermal conductivity, and its 
value for the packed beds of spheres saturated fully 
with liquid (S = 1) and gas (S = 0) are needed. A 
convenient and relatively accurate correlation is that 
given by Krupiczka (141 as 

k 0 280-0.757i0*~-0.05710g(AJk,) 

2= 5’ 0 kc kr 
(18) 

where kf is the liquid or gas thermal conductivity. 
The dispersion components of the total effective 

thermal diffusivity are described in a manner similar to 
equation (12) using the gas and liquid Peclet numbers 
(similar to that defined in equation (13)). The liquid 
phase momentum equation can be written using the 
capillary pressure pC = ps --p, and making the reason- 
able assumption that 0 = a(T) only. Then equation 
(6) becomes 

& apt 
UI = -r*l ( p,g+g-;ix > +&,;Teg. (19) 

We then use the Leverett relation, i.e. 

to find ap,lds and ap,jaT. This gives 

__-._.----+_J.ab. (20) aPC fl aJ as 
ax (K/E)"* as ax (K/s)“* 8T ax 

The the~o-~pilla~ coefficients K,,, and ir,, are 
functions of the matrix structure, s, (T, wettability, 
pi/p*,, and the liquid and gas phase distributions in the 
pores (which are history dependent). A very simple 
model applicable under restricted conditions, is given 
by Bear and Bensabat as 

(21) 

where A,,/V, is the specific liquid-gas surface area, 
and 1 +L,, is the tortuosity of the liquid phase. Both 
of these, as well as their gaseous counterparts, are 
functions of saturation. Due to the lack of an alter- 
native, we estimate the liquid surface area as being 
equal to a fraction of the solid surface area (i.e. inde- 
pendent of s). Then, for beds of spherical particles 
and by allowing for saturation dependencies that 
satisfy the expected asymptotes, we have 

4 4nR2 
YiZUi 

(1 -S)S 

= a, y (I -S)S (23) 

(24) 

where a I is constant with a magnitude less than unity. 
We also estimate the to~uosities (the ratio of the 
actual length a tracer takes in moving through a bed 
of length L, to the straight-line path, i.e. L) to be 
independent of s and equal to ((3 -s)/2) ‘I’. 

The phase permeabilities are given as the product 
of the absolute and relative permeabilities and, includ- 
ing J(s), are already discussed in ref. [4]. Equations 
(l)-(4) can be combined, and the result is the so- 
called saturation equation stating the overall mass 
conservation in terms of the driving forces of the 
flows. Then, along with equations (12) and (15), they 
can be solved for the three unknowns s, png, and T. 
The required boundary condition at the surface x = L 
and at the lower, adiabatic, impermeable surface are : 

atx=L 

t.2-5) 

qi = PIN& + (PC&&, g = h(T, - T) (26) 

Pea +Pnp = Pga (27) 

atx=O 

apci? ah g u-u =LT_o 
-a7;-- ax-ax- I- g ax- * (28) 

The initial conditions are approximated here as iso- 
thermal. Taking the pressure in the gas phase to be 
hydrostatic (note that complete displa~m~t of the 
nonwetting phase is not possible without large applied 
pressures), the initial saturation distribution so(x) is 
determined from the reduced form of equation (19), 
i.e. 

d&o) 
7 +@I-_p,)@ = 0 

with a prescribed so at x = 0. This value, for example, 
can be l--~~~~. For a completely filled (except for 
irreducible nonwetting phase saturation) bed, the 
saturation is uniform and at 1 -Sir*. The irreducible 
nonwetting and wetting phase saturations sirs and Si, 
must also be specified. 

We now discuss dependence of h and h,,, on the 
surface saturation. It was shown in ref. [ 151 that using 
convective drying of partially saturated packed beds 
of different size spherical particles, for Bond numbers 
(Bo = g~~~2/~) less than 0.01 and for moderate Reyn- 
olds numbers (Re = u~R/~~), the heat and mass trans- 
fer coefficients are independent of the surface satu- 
ration (during the funicular state). The results of ref. 
[16] using steady-state, simultaneous heat and mass 
transfer for two-dimensional, partially liquid covered 
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surfaces also confirm this phenomenon. Schliinder 
[ 171 used a diffusion model to show that for small 
Bond numbers and when the thickness of the con- 
centration boundary layer is much larger than R, the 

vapor molecules leaving the liquid patches of the sur- 
face diffuse sidewise and cover the dry patches. These 
molecules then diffuse through the boundary layer 
(along with other molecules that directly leave the 
liquid patches and diffuse toward the edge of the 
boundary layer). As both Re and Bo tend to zero, the 
effect of surface saturation on the mass transfer rate 
diminishes. This is the case for the experiment con- 
sidered here, as will be evident from the nearly con- 
stant evaporation rate in the funicular regime. For 
large Bo and Re, the heat transfer through the exposed 
solid and the substrate has to be included, also the 
effect of the solid and liquid conductivities, among 
other parameters, should be considered [16]. Further 
discussion on various aspects of two-phase flow and 
heat transfer in porous media can be found in ref. 

[181. 

3.2. Porosity heterogeneity 
The porosity or the pore size (or particle size) used 

in the volume-averaged equation is the average value 
over a representative elementary volume, and in our 
analysis, we have assumed that this average porosity 
(or particle size) is uniform throughout the packed 
bed. We now allow for the porosity (or particle size) 
to have a distribution in the elementary representative 
volume with an average value of E. In connection 
with the one-dimensional problem considered, this 
porosity heterogeneity in the representative elemen- 
tary volume causes an alteration in the local capillary 
pressure. This alteration is a result of imposed lack of 
lateral capillary pressure gradient. Then at a location 
X, the liquid saturation of various pore sizes must be 
such that the capillary pressure for these pores at this 
location x must be the same. This redistribution of 
the liquid at location x among the pores favors filling 
of the smaller pores more than the larger ones (in 
order to keep the capillary pressure of all these pores 
at location x the same). We are interested in examining 
the effect of this porosity heterogeneity on the critical 
time, as we expect that the smaller the porosity (and 
permeability) the smaller will be the critical time 
(because of the extra resistance to the liquid flow and 
the larger required &V/&X 141). In particular, we look 
for a normal distribution of porosity around F and 
examine the effect of this distribution on the critical 
time. 

We choose a Gaussian probability distribution 
function for porosity, i.e. 

We also specify that E- AE < E ,< B+ As. In equation 
(30), K, is the truncation constant and crO the standard 
deviation. The J-function used is that found by cor- 

relating the data of Leverett [19] for the drainage 
branch of the capillary pressure-saturation curve. 
This particular J(s) is given by Udell and Fitch as 

J(S) = 1.417(1 -S)-2.102(1 -S)? 

+ 1.266(1 -S)3 (31) 

where the reduced saturation is 

s - s;, 
,y =: ___~_._. 

1 - s,, - Sirg (32) 

For a given pc, an implicit equation for S can be 
written as 

PC 
‘= ‘-rr[1.417-2.1~2(1-S)2+l.266(1-S)~] 

K(E) If2 
x- . 1 1 e (33) 

The average local saturation is 

Other variables such as u, and u8 are also averaged, 
e.g. 

E-+& 

u, = s u,P(E) da. (35) 
E-AC 

Now, the s, T, and pna equations are averaged using 
the porosity averaging shown above. Then, for a given 
average saturation .?(x) found from the solution of 
these equations, an iterative scheme is executed to 
find a capillary pressure that satisfies this average 
saturation. A capillary pressurep, is guessed and used 
in equation (33) and S’(E) is found. Then, the average 
of this S(E) is taken using equations (32) and (34) and 
compared with the given S. 

The capillary pressure-saturation curve for various 
porosity dist~butions can be found by specifying (rO, 
E; and AE. For this, we only iterate on the capillary 
pressure as outlined above. The results are given in 
Fig. 2. As was mentioned, the distribution of the 

1.4 , , , , , , I 

1.2 c 
; - 0.4, be-O.2 

J 

1.0 

PC 0.8 

r31L1”2 
WI 0.6 

0.4 

0.2 

0.0 
0.0 0.2 0.4 0.8 0.8 1.0 

s 

FIG. 2. Effect of porosity heterogeneity on the variation 
of the capillary pressure with respect to average, reduced 

saturation 3. 
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liquid required for capillary pressure uniformity 
among pores favors filling of the small pores more 
than the large ones. Therefore, small saturations hav- 
ing a nonzero standard deviation cause an increase in 
the local capillary pressure. This is evident in Fig. 2. 
For large saturations, the Gaussian porosity dis- 
tribution used does not result in a significant change 
in p,(S). Therefore, we expect this distribution to 
become significant only when the local saturations 
drop significantly, i.e. near the critical time. The larg- 
est standard deviation g,, used in Fig. 2 is 0.20, but 
there is an asymptotic behavior for large o0 that seems 
to be approaching the results for crO > 0.20. The value 
of AE has a more pronounced effect on pc, and we 
have limited it to 0.2 for the sake of computational 
economy and because it is realistic. 

Note that we could use the histograms showing the 
distribution of the particle size (d) instead of the 
porosity distribution. Both E and d in turn influence 
K through relations such as equation (1). Therefore, 
our discussion of porosity heterogeneity is more 
general and applies to any heterogeneity in the 
matrix which causes a heterogeneity in K. 

3.3. Evaporative front regime 
As was mentioned, at t = t, the surface saturation 

becomes the immobile saturation sir and for a short 
period thereafter, the surface dries out intermittently. 
After this intermittent period, the addition of heat to 
the surface results in evaporation in a front that has 
saturation of sir. This evaporation front moves inward 
into the bed as the heat addition proceeds. The tem- 
perature of this evaporation is not known a priori, 
and part of the heat arriving at this front (through the 
dry region) results in raising the temperature of the 
wet region. The front position, xi(t), is primarily deter- 
mined by the transport of heat and species in the dry 
region (x < xi). In convective heating of the beds, in 
addition to the surface (or film) resistance to heat 
flow, this dry region also offers resistance to the heat 
flow (which in general is much larger than the film 
resistance). The flow of heat through the gas saturated 
dry region is by axial conduction and against the flow 
of the condensible gas. The description of the two- 
phase region is that given in Section 3.1. In the dry 
region, we use equation (7) for the gas flow with 
KgAO = 0. The gas continuity equation, the species 
conservation equation, the total effective mass 
diffusion coefficient, and the energy equation given 
for two-phase flow, hold except we use s = 0 and 
ri = 0 in the dry region. 

Once the surface dries out, the heat transfer from 
the dry surface will be that of heat transfer from 
a rough surface with transfer of noncondensibles 
through the surface pores into the bed, and of the 
vapor out of the bed. The flow of the gases across the 
surface influences the heat transfer slightly. However, 
as was mentioned, the film resistance at the surface is 
much smaller than the resistance offered in the dry 
region. For mass transfer, a similar phenomena occurs 

near the surface, except the mass transfer is only 
through the pores (gas phase), as heat transfer can 
occur through the gas and solid phases. Here we 
choose the same heat and mass transfer coefficients 
given in Section 2 and, again, assume the validity of 
the analogy to continue even for the dry surface. The 
boundary condition for x = L, i.e. equations (25)- 
(27) hold except we have U, = 0. Also, in the dry zone, 
the vapor is no longer in thermodynamic equilibrium, 
and, therefore, its temperature is determined by the 
energy equation and boundary conditions. 

At the evaporative front (x = xi), we have 

+ $~&,(xi+) - u,,(x; )I (36) 

Pc,[~,,(x,‘)-u,,(x,-)l = UW-ES% (37) 

P.,b,W--u,KN 

4. SOLUTION METHOD 

The finite-volume method described in Patankar 
[20] is used to discretize the equation. The implicit 
method is used in order to allow for large timesteps. 
The staggered mesh compatible with application of 
the conservation principles to each node is used. For 
t > t,, an adaptive technique was used allowing for 
the concentration of nodes near the moving interface. 

In the funicular regime, the liquid flow dominates. 
The three differential equations are solved for s, T, 
and pnp. The vapor density is found from p,,(T,p,), 
i.e. the ClausiusClapeyron/Kelvin equation [4]. 
Here, the effect of curvature on pep is not significant 
until sir is reached (note that K N lo-” m’). The 
results of this implicit technique were checked against 
those of the explicit technique of ref. [4], and the 
computed critical time of the two methods agreed to 
within 3% for a large range of permeabilities. 

In the evaporative front regime, the conservation 
equations in the two domains (dry and wet), and the 
conditions at the interface of these domains, must be 
solved simultaneously. In the xi < x < L domain, the 
unknowns are png, pcs, and T, and the vapor is super- 
heated. The unknowns in the 0 < x < xi domain are 
the same as those given for the funicular regime. In 
order to start the integration, a small dry region is 
introduced at t = t,. This was taken small enough so 
that the results for t, sufficiently larger than At, are 
not influenced by the choice of this initial, imposed 
dry region. The iteration always begins at x = L, and 
the surface heat and mass balance conditions are 
solved for T and pCg. Then, pne is found from the 
pressure boundary condition. Next, the nodes in 
xi < x < L are updated, and the conditions at xi are 
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solved. The position of xi is then computed using 
s = Sir, and by using equation (37). Then, T(xi) is 
found from equation (36) and pC,(xi) from 
p,,[T(x,),p,j, and equation (38) is updated using the 
new values of T, peg, pnp at Xi, This procedure con- 
tinues until convergence (in terms of overall heat and 
mass balance) is found according to a prescribed con- 
dition (better than 1% in the a~umulated heat and 
mass content of the bed). The standard convergence 
test of using progressively smaller mesh (and here also 
by redistribution of the mesh) is performed, and only 
the results satisfying this test are reported. 

Because of the dominance of the liquid flow in the 
funicular regime, small At has to be used in order to 
avoid instabilities. As t + t,, the gradient of saturation 
near the surface increases rapidly, and a high con- 
centration of mesh is used in this region. In the moving 
front regime, a larger pressure difference develops 
between x = x, and L, which also requires small At. 
We have made no special effort to exclude terms that 
make small contributions nor to devise more efficient 
solution methods. This area needs further develop- 

ment. 

5. RESULTS AND DISCUSSION 

The above formulated one-dimensional, transient 
analysis of both funicular and evaporative front 
regimes and porosity heterogeneity as well as the 
results of the experiment outlined in Section 2, are 
presented below. The results are for K = 9.9 x lo-l2 
m2, E = 0.4, r, = .55”C, To = 2O”C, h = 18.3 W me-’ 
K-‘, sir = 0.05, sirg = 0.02, and a bed depth of 25.4 
mm, for a 0.10 mm glass spheres-ethanol bed. 

We chose a, = 0.1 in equations (23) and (24). Also, 
because the capillary pressure relation given by equa- 
tion (3 1) underestimates the ex~~mental results for 
pC and, when used in equations (6) and (29), gives 
results that do not agree with the experimental obser- 
vations, we neglected the effect of gravity in the 
momentum equations. The Leverett reduction, which 
is based on the experimental results of water-air- 
nonconsolidated sandstone systems, does not allow 
for the influence of wettability (ethanol wets the glass 
spheres fairly well). We note that the fo~ulation 
given in Section 3 is rather general and, given the 
required constitutive equations (e.g. pC, K,, Kg, D,, 
D,,) with sufficient accuracies, accurate predictions 
can be made using the effect of capillarity, gravity, 
and the~o-capillarity. 

5.1. Funicular regime 
As was mentioned, the 3~ and Re for the particle 

size-fluid combination used in the ex~~rnent rest&s 
in constant heat and mass transfer coefficients (i.e. 
independent of the surface saturation). Figure 3 shows 
the variation of the mass transfer rate with respect to 
time. As will be shown, initially the surface tem- 
perature drops resulting in the transfer of heat to the 
surface from both the bed and the ambient. Therefore, 

(Ethanol-Glass Spheres, hpa - 18.3 

t, min 

FIG. 3. Variation of mass transfer rate with respect to time. 
Both the funicular and evaporative front regimes are shown. 
The experimental results are shown with symbols. The pre- 
dicted and estimated (using experimental results) critical 

times are also shown. 

larger mass transfer rates occur initially. Later on, the 
surface temperature rises, and heat begins to How into 
the bed resulting in a reduction of the evaporation rate 
(equation (20)). Note that because of the rather small 
heat transfer coeflicients, the initial transient (bed 
cooling-hea~ng) occupies a larger portion of the 
funicular regime period (0 < t < t,). Therefore, the 
so-called constant drying period does not dominate 
over 0 < t < t,. For I > t,, the mass transfer rate 
decreases substantially indicating surface drying. The 
predicted critical time (the time at which s = sir) and 
the critical time estimated from the drop in the mass 
transfer rate and rise in the surface temperature are 
also marked in Fig. 3. Note that the predicted (114.3 
min) and experimental t, are in very good agreement 
(this was also found in ref. [4]). The larger scatter 
existing in the experimental data for small mass trans- 
fer is associated with the inaccuracy of measuring 
small changes in the mass of the bed. 

Figure 4 shows the predicted and measured satu- 
ration averaged over the entire bed (one-dimen- 
sional), and, as expected (because experimental h is 
used), the agreement is very good. The predicted and 
measured critical times are also shown, and it is evi- 
dent that as/at drops significantly for t > t,. Figure 5 
shows the predicted and measured surface tem- 
peratures, and, as was mentioned, initially the surface 
temperature drops, and heat flows from the bed to the 
surface. This is because the bed is not initially at the 
wet-bulb temperature. As the heat addition from the 
ambient proceeds, the surface temperature begins to 
rise, and heat flows into the bed resulting in the pre- 
heating of the liquid evaporating on the surface. For 
t > t,, the surface temperature rises rapidly indicating 
drying of the surface. 

Figure 6 shows the predicted temperature dis- 
tribution in the bed for various elapsed times. The 
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FIG. 4. Predicted and measured variation of the saturation 
averaged over the bed, during the funicular regime, with 

respect to time. The critical time is also shown. 
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FIG. 5. Predicted and measured variation of the surface 
temperature with respect to time. The critical time is also 

shown. 
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FIG. 6. Predicted temperature distribution for various FIG. 8. Distribution of the predicted local saturation during 
elapsed times during the funicular regime. the funicular regime for various elapsed times. 
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FIG. 7. Predicted gas pressure distribution during early stages 
of the funicular regime. 

initial surface temperature drops, and the consequent 
heat flow toward the surface (prior to t = 24 min) is 
evident. Note that the presence of the noncondensibles 

and the resistance to vapor flow causes initial 
reduction of the pressure (will be shown next) and 
further decreases in the temperature. Note that as t, 
is approached, the bed temperature distribution and 
the mass transfer rate (Fig. 3) do tend toward asymp- 
totes. Figure 7 shows the predicted total pressure dis- 
tribution in the bed. The initial total pressure 
reduction lasts about 20 min. Note that because the 
vapor and liquid are in thermodynamic equilibrium, 

in this early stage @,$& > 0, i.e. vapor moves 
towards the surface. For t > 20 rnin, the vapor moves 
inward, ap,,/ax < 0. In contrast, the mass averaged 
velocity given by ap,jax is inward for t -c 20 min. 

The predicted saturation distribution for various 

elapsed times, prior to t = t,, is shown in Fig. 8. 
Initially the saturation distribution is nearly uniform. 
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As the saturation decreases and the resistance to the 
liquid flow increases, the saturation gradient required 
for capillary pressure driven flow increases until finally 
the surface saturation, which is the lowest, becomes 
equal to s,,. 

5.2. Porosity heterogeneity 
Since the critical time depends on the variation of 

the pressure with respect to saturation, especially for 
saturations near s,,, we can use the effect of porosity 
heterogeneity on pC (Fig. 2) to examine how this het- 
erogeneity influences t,. We expect that for a given E 
and As the critical time would increase as cr,, increases 
and pC(s -+ s,,) increases. Figure 9 shows the results 
for 0.0 < u0 < 0.05, and this increase in t, is evident. 
The range of co is small and perhaps realistic, and is 
computationally practical. We expect that t, would 
increase monotonically for trO x 0.20 (because Fig. 2 
shows that pC(s -+ s,,) approaches an asymptote) and 
note that the porosity heterogeneities can be sig- 
nificant. We also note that the empirical results for 
pc(s, E, 6) are generally obtained for beds where E is 
locally (within the representative elementary volume) 
heterogeneous, and, therefore, for more meaningful 
results, pc for homogeneous porosity distribution 
should be used. We expected that for porous media 
(not restricted to packed beds) where the average pore 
size d is small, AE z E, and these small pores (E + 0) 
are connected, even at low saturations (s + sir), the 
surface will not dryout, and t, extends until almost 
the entire bed is at s cz s,,. 

5.3. Moving evaporative front regime 
The predicted mass transfer rate for t > t, was 

included in Fig. 3 along with that for the funicular 
regime. The significant drop in rit, which is the result 
of resistance to heat and mass transfer, in the dry 
region, is evident in this figure. The predicted and 
measured mass transfer rates are in very good agree- 
ment. The computation is not continued as far as the 
available experimental data because of the intensive 
computation resulting from the inclusion of both dry 
and wet regions and because of the inclusion of all the 
terms in the conservation equations. However, the 
suitability of the formulation of the evaporation front 

- Pmdiaion AE - 0.2 
66Or- 

I I I I I , I , 
0.0 0.01 0.02 0.03 0.04 0.05 

FIG. 9. Variation of the predicted critical time with respect 
to the standard deviation in the Gaussian distribution of the 

porosity heterogeneity. 

regime given in Section 3.3 for prediction of mass 
transfer rate is evident. 

Figure 10 shows the predicted temperature dis- 
tribution for several elapsed times (passed the critical 
time) along with some experimental results. The for- 
mulation slightly overpredicts the surface tempera- 
ture. The position of the evaporation front x, is also 
shown. Note that the predicted critical time is used 
and because of the slight difference between this and 
the experimental results (which is larger than 1 min), 
the results for r = t,+ 1 min are not expected to be in 
good agreement with the experiments. Figure 11 
shows the predicted distribution of the total pressure 
for the same elapsed times as in Fig. 10. Note that 
vapor flows from the evaporative front to the surface 
thus requiring l?p,/ax < 0. The results of Fig. 11 show 
that cYp,/ax is also negative in xi < x < L. Thus the 
mass velocity ug is positive (moving away from the 
evaporative front toward the surface). The vapor is 
superheated in the dry region (temperature dis- 
tribution in the dry region is shown in Fig. 10) and in 
equilibrium with the liquid in the wet region. As the 
elapsed time increases, the total pressure in the wet 
region increases indicating significant bulk evap- 

25 - 

24 - 

FIG. 10. Measured and predicted temperature distributions 
during the early stages of the evaporative front regime. 
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FIG. 11. Distribution of the predicted gas pressure during 
early stages of the evaporative front regime. 
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oration (ri in equation (15)), as a consequence of a rise media-theory and experiment, Drying Technol. 1,3-33 

in the temperature of the wet region (Fig. 10). (1983). 
6. 

0. CONCLUSIONS 
7. 

Heat addition to a partially saturated porous 
medium that is everywhere below the boiling point is 
examined through the funicular regime (S(X) > Sir) 
and the moving front regime. The effect of tem- 
perature nonuniformity and the consequent surface 
tension nonuniformity on the liquid and gas phase 
flows is examined, and the appropriate momentum 
equations are presented. The critical time (time at 
which s(x = L) = s, = s,,) can be readily determined 
from the integration of these and other related 
conservation equations. Since the capillary pressure- 
saturation relation determines the critical time, the 
effect of absolute permeability heterogeneities on the 
capillary pressure and the critical time is examined. 
The results show that the porosity heterogeneities, with 
normal distributions, increase the critical time. The 
speed of the evaporation front and the instantaneous 
mass transfer rate during this regime, are also 
predicted. The predicted results are in good agreement 
with the experiments performed using a glass spheres- 
ethanol bed. 
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REGIMES FUNICULAIRE ET DE FRONT EVAPORATIF DANS LE SECHAGE 
CONVECTIF DES LITS GRANULAIRES 

RCu&-Le chauffage convectif dun lit ftxe partiellement sature et les evaporations de surface et inteme 
sont consider&s dans les cas od la temperature partout dans le lit est au dessous de la temperature de 
saturation a la pression locale. Dans la premiere periode od la phase liquide est continue (regime funicu- 
laire), on examine l’effet de la non uniformiti de tension superficielle du liquide et des ecoulements de la 
phase gazeuse. Le temps critique (le temps au bout duquel la saturation de la surface devient &gale $ la 
saturation immobile) est trouve par integration des equations de bilan. On examine l’effet des heterogtneites 
de la permtabilite absolue sur ce temps critique et on montre que, pour des distributions normales de 
porositt, le. temps critique croit plus que pour des permeabilitis homogenes. Le transfert de masse pendant 
le regime de front Bvaporatif est predit en traitant a la fois les regions s&he et humide et l’interface mobile. 
On conduit une experimentation dans laquelle un lit de billes de verre 0,lO mm-ethanol est s&he par 
convection et un bon accord est trouvi entre les flux de masse predits et calcults, entre les temps critiques 

et entre les temperatures de surface. 
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BEREICHE DES KAPILLARTRANSPORTS UND DER VERDAMPFUNGSFRONT BE1 
DER KONVEKTIVEN TROCKNUNG VON SCHUTTUNGEN 

Zusammenfassung-Es wird die konvektive Beheizung einer anfangs teilweise gesattigten Schiittung und 
die sich ergebende Verdampfung von Fltissigkeit an der Obertliiche und im Inneren betrachtet. Dabei ist 
die Temperatur im Schiittbett iiberall unterhalb der Sattigungstemperatur bei dem jeweiligen ortlichen 
Gesamtdruck. In einem ersten Zeitraum, wo die Fliissigkeit die kontinuierliche Phase darstellt (Bereich des 
Kapillartransports), wird der Einflu5 der ungleichml5igen Oberflichenspannung auf die Strijmung von 
fliissiger und gasfiirmiger Phase untersucht. Durch Integration der Erhaltungsgleichungen ergibt sich der 
kritische Zeitpunkt, der dadurch gekennzeichnet ist, da5 die Oberllkhenslttigung den Wert der stationaren 
Sattigung erreicht. Der Einflu5 der Heterogenitlt der absoluten Permeabilitlt auf diese kritische Zeit wird 
untersucht. Dabei zeigt sich, da5 fur normale Porositltsverteilungen die kritische Zeit gr65er ist als bei 
homogenen Permeabilitiiten. Der Stofftansport im Bereich der Verdampfungsfront wird unter Beriick- 
sichtigung des trockenen und des feuchten Bereichs sowie der beweglichen Grenztllche ebenfalls berechnet. 
In einem erganzenden Versuch wird eine Schiittung aus 0,lO mm Glasktigelchen mit Ethanol konvektiv 
getrocknet. Die gemessenen und berechneten Werte fur den Stofftransport, die kritische Zeit und die 

Oberfllchentemperatur stimmen gut iiberein. 

KAHATHbIfi Pi kfCl-IAPMTE!JIbHbI~ PEJKKHMbI flBWIEHHIl9POHTA MCl-IAPEHkUl 
I-IPH KOHBEKTHBHOR CYUIKE l-‘PAHYJIkiPOBAHHbIX CJIOEB MATEPWWIA 

~QE~i'iCCJIeAyIoTCS KOHBeKTHBIibIii HarpeB nepBOHaWJlbH0 'IaCTHVHO HaCbUUeHIibIX IKHAKoCTbiO 

ILTIOTH~IXCAO~BH~OC~~A~IO~~~~~~~~~~~ nosepmocr~ ~3~~~~0~n~~an~,KorAaTehmepa- 

Typa no ece~cnoe~eTebmepaTyp~ mcbxqemin npnnoKaAbHobf~yMbfapHobf AaaneHaH. Bnepuo~ 
nepAOAeCyIlrecTBOB~HKC~O~Oi~O~~bl(K~uIanlbl~~)~~3Hpy~KBARnHHeH~~O- 

~OA~CTH nonepx~oc~~oro AaTsKeHHJi Ha TeSeHHe B XWLUCO~ H ra3006pa3~ofi @%3x. Kpwnwcsoe 
BpeMK (npH ROTOpOM HaCbiWeHIie nOilepXHOL?TH CTaHOBHTCJi paBHbIM HaCbEQeHIilO HenOABHMOk 

~ocra~o)onpeAenseTcn~erpepoea~e~ypan~e~coxpane~~n.OueH~~aercn~mrlmaeHeo~o- 

pOAHOCTeii a6COAWTHOf I'IpOHmaeMOCTH Ha KpEiTHWCKOe B&leMX H lIOKiUF3H0, PTO l-IpH HOpMEU,bHOM 

pacnpenenemia nopo3Hocnr rprnfw42Koe speMn BospacraeT no cpasaeemo co cAy¶aeM OAHO~OAH~IX 

npoH~M~k.OnpeAenKeTCKTararenrOpocrbMaccOnepeHocaB &WKHMe ABHXeHHff I$pOHTaHClIape- 
HHKH~o~HO~~H~H~~~~XO~OE~BA~~~~ yWCTKOB,aTaKZUe ,UBHXylIteiicK rpaaam;r pa3AeAa.IIpoeo- 

AHACK 3KCl'lepHMeiiT, IQNi KOTOPOM OCylUe-CrBAKJIaCb KOHBCKTHBHBII CyUlKK CJIOK, COCTOKlUerO H3 

creKmnib8x urapHKoe maMeTp0M 410 MM H Jrauona, H nonyuerio xopomee cornacrfe ~eqy reopeni- 

~~CKHMHB~KC~~~HM~HT~~H~IMH~~~TBT~MHMRCKO~OCTHM~~O~~H~,K~HT~~KO~O BpeMeHH 


